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1. Example 3.3.16 With f(x) = ex (sin x+ cos x) calculate T8,0f(x).

Solution

f (1)(x) = ex (sin x+ cos x) + ex (cos x− sin x)

= 2ex cos x,

f (2)(x) = 2ex cos x− 2ex sin x

= 2ex (cos x− sin x) ,

f (3)(x) = 2ex (cos x− sin x) + 2ex (− sin x− cos x)

= −4ex sin x.

f (4)(x) = −4ex sin x− 4ex cos x = −4f(x) .

The fact that a derivative is connected to the function simplifies matters
greatly. For now

f (5)(x) = −4f (1)(x) , f (6)(x) = −4f (2)(x) , f (7)(x) = −4f (3)(x)

and f (8) (x) = −4f (4)(x) = 16f(x) .

Thus f(0) = 1, f (1)(0) = 2, f (2)(0) = 2, f (3)(0) = 0, f (4)(0) = −4,
f (5)(0) = −8, f (6)(0) = −8, f (7)(0) = 0 and f (8)(0) = 16.

Hence

T8,0f (x) = 1 + 2x+ 2
x2

2!
+ 0

x3

3!
− 4

x4

4!
− 8

x5

5!
− 8

x6

6!
+ 0

x7

7!
+ 16

x8

8!

= 1 + 2x+ x2 −
x4

6
−

x5

15
−

x6

90
+

x8

2520
.

�

2. Example 3.3.17 Calculate

T8.0

(

cos2 x
)

Solution If f(x) = cos2 x then f ′(x) = −2 cosx sin x = − sin 2x. This
last equality will save a lot of effort when differentiating. Leave it to
the student to check that

T8.0

(

cos2 x
)

= 1− x2 +
1

3
x4 −

2

45
x6 +

1

315
x8.
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3. Example 3.3.18 Let f(x) = sin x. Calculate T5,0f(x) and use La-
grange’s form of the error to prove that

|sin (0.1)− T5,0 (sin (0.1))| ≤ 1.38888× 10−9.

Hence give sin 0.1 to 8 decimal places.

Solution From f (2)(x) = −f(x) we get f (n)(x) = (−1)n/2 sin x if n is

even and f (n)(x) = (−1)(n−1)/2 cos x if n is even. Thus

T5,0f(x) = x−
x3

3!
+

x5

6!
.

Lagrange’s form of the error states that

Rn,0f(x) =
f (n+1)(c)

(n+ 1)!
xn+1.

In this example
∣

∣f (n+1)(c)
∣

∣ ≤ 1 for all n and c, thus

|Rn,0f(x)| ≤
|x|n+1

(n+ 1)!
.

Hence

|sin (0.1)− T5,0 (sin (0.1))| ≤
0.16

6!
= 1.38888× 10−9,

as claimed.

We can open this out as

T5,0 (sin (0.1))−1.38888×10
−9 ≤ sin (0.1) ≤ T5,0 (sin (0.1))+1.38888×10−9.

Yet

T5,0 (sin 0.1) = 0.1−
1

6
(0.1)3 +

1

120
(0.1)5

= 9.983341666666666 67× 10−2

So

9.98334166×10−2−1.38888×10−9 ≤ sin (0.1) ≤ 9.98334166×10−2+1.38888×10−9.

17



that is,
0.0998334152 ≤ sin (0.1) ≤ 0.098334180.

Looking for digits in common between the upper and lower bounds we
see that to 8 decimal places sin 0.1 is 0.09983341.

(In fact sin 0.1 = 0.0998334166468281523...) �

4. Example 3.3.19 Let f(x) = sin2 x. Calculate T5,0f(x) and use La-
grange’s form of the error to bound

∣

∣sin2 (0.1)− T5,0f(0.1)
∣

∣ .

Solution Repeated differentiation gives

f ′(x) = 2 sin x cos x = sin 2x f ′(0) = 0,

f ′′(x) = 2 cos 2x, f ′′(0) = 2.

The next derivative gives the important relationship between deriva-
tives, f (3)(x) = −4 sin 2x = −4f (1) (x). Then f (3)(0) = 0 along with

f (4)(x) = −4f ′′ (x) , f (4)(0) = −8,

f (5)(x) = −4f ′′′ (x) = 16f ′ (x) f (5)(0) = 0.

f(6) (x) = 16f ′′ (x) .

Thus

T5,0f(x) = 0 + 0x+ 2
x2

2
+ 0

x3

3!
− 8

x4

4!
+ 0

x5

5!

= x2 −
1

3
x4.

And Lagrange’s form of the error states that, for some c between x and
0,

R5,0f(x) =
x6

6!

d6

dx6
sin2 x

∣

∣

∣

∣

x=c

=
x6

6!
(32 cos 2c) .

First note that with x = 0.1 > 0 we have R5,0f(x) > 0, in which case

sin2 (0.1) = T5,0f(0.1) +R5,0f(0.1) > T5,0f(0.1) .

Yet

T5,0f(0.1) = (0.1)2 −
1

3
(0.1)4 = 0.009966666666...,

so
sin2 (0.1) > 0.0099666...
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For any upper bound we have

R5,0f(0.1) ≤
32

6!
(0.1)6 ≤ 4.444...× 10−8.

Thus

sin2 (0.1) = T5,0f(0.1) +R5,0f(0.1)

≤ (0.1)2 −
1

3
(0.1)4 +

32

6!
(0.1)6

= 0.009966711111... .

Hence
0.0099666... < sin2 (0.1) < 0.009966711111... .

In fact
sin2 (0.1) = 0.00996671107937918444... .

5. An example in the notes is not as strong as it could be.

Example 3.3.20 Use Lagrange’s form for the error to show that

∣

∣

∣

∣

cos2 x−

(

1− x2 +
1

3
x4

)∣

∣

∣

∣

≤
2

45
|x|6 .

Hence show that

0.99003328 ≤ cos2 0.1 ≤ 0.99003337.

Thus
cos2 0.1 = 0.990033

to 6 decimal places.

In fact cos2 0.1 = 0.990033288920620816...

Solution The observation to make is that the polynomial of degree 4
is, in fact, the Taylor polynomial of degree 5. This is because

1− x2 +
1

3
x4 = 1 + 0x− x2 + 0x3 +

1

3
x4 + 0x5 = T5,0

(

cos2 x
)

.
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Thus
∣

∣

∣

∣

cos2 x−

(

1− x2 +
1

3
x4

)∣

∣

∣

∣

=
∣

∣R5,0

(

cos2 x
)∣

∣ =

∣

∣

∣

∣

f (6)(c)

6!
x6

∣

∣

∣

∣

=
25

6!
|sin 2c| |x|6 ≤

2

45
|x|6 .

The Taylor polynomial approximation to cos2 x at x = 0.1 is

T5,0

(

cos2 x
)∣

∣

x=0.1
= 1− (0.1)2 +

1

3
(0.1)4 = 0.99003.

The error in this approximation is

2

45
|x|6 =

4

90
(0.1)6 = 0.00000004.

Hence
cos2 0.1 ≤ 0.99003 + 0.00000004 = 0.99003337

while
cos2 0.1 ≥ 0.99003− 0.00000004 = 0.99003328.

�

6. Taylor’s Theorem without an error term would have stated that
“if the first n derivatives of f exist and are continuous at a then

lim
x→a

Rn,af(x)

(x− a)n
= 0.” (9)

In assuming a little more, namely that the first n+ 1 derivatives of
f exist (which implies continuity of f (i), 1 ≤ i ≤ n) we can deduce a
little more, namely how quickly Rn,af(x)/ (x− a)n approaches 0. See
(3) or (4) .
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7. Taylor’s Theorem with an error implies M. V. Theorem Putting
n = 0 in (1), the definition of the remainder gives

f(x) = T0,af(x) +R0,af(x) = f(a) +R0,af(x) .

Using Lagrange’s Theorem gives

f(x) = f(a) + f ′(c) (x− a)

for some c between a and x, by (4). Rearranging,

f(x)− f(a)

x− a
= f ′(c) ,

which is the Mean Value Theorem seen earlier. But this is not a proof
of the Mean Value Theorem since we used the ideas of the Mean Value
Theorem to prove Lagrange’s form of the error, (4) .

8. Integral form of the error An alternative form of the remainder
which is sometimes useful is:

Integral Form: (Cauchy 1821) If the first n + 1 derivatives of f exist
and are continuous on an open interval containing a and x then

Rn,af(x) =

∫ x

a

f (n+1)(t)

n!
(x− t)n dt.

(We are jumping the gun here since we have to wait until the next
chapter before we define integration!) Note that we have to assume
that f (n+1)(t) not only exists but is continuous on (a, x). This is more
than is required for either Lagrange’s or Cauchy’s forms of the error.

9. A limit for cos x. Taylor’s Theorem in the form

cosx = 1−
x2

2!
+

x3

3!
sin c

for some c between 0 and x leads to

lim
x→0

cos x− 1

x2
= −

1

2
,

which we have seen in Part 1 of this course. But now we see that −1/2
arises as a coefficient in the Taylor series.
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10. Inequalities for ln (1 + x). If f(x) = ln (1 + x) then

Tn,0f(x) =
n

∑

r=1

(−1)r−1 xr

r
.

Lagrange’s form for the Remainder term around x = 0 becomes

Rn,0f(x) =
f (n+1)(c)

(n+ 1)
xn+1 =

(−1)n xn+1

(1 + c)n (n+ 1)
,

for some c between x and 0. Since x > −1 for ln (1 + x) to be defined
we have c > −1 too in which case 1 + c > 0.

Assume x > 0.

If n is even then Rn,0f(x) > 0, i.e. ln (1 + x) > Tn,0f(x). For n = 2, 4
and 6 this gives

ln (1 + x) > x−
x2

2
, ln (1 + x) > x−

x2

2
+

x3

3
−

x4

4
.

and

ln (1 + x) > x−
x2

2
+

x3

3
−

x4

4
+

x5

5
−

x6

6
.

The first of these inequalities was a problem in an earlier section de-
duced from the Mean Value Theorem.

ln(1+x)

x−
x
2

2

x−
x
2

2
+ x

3

3
−

x
4

4
x−

x
2

2
+ x

3

3
−

x
4

4
+ x

5

5
−

x
6

6

1 2

x

y

If n is odd then Rn,0f(x) < 0, i.e. ln (1 + x) < Tn,0f(x). The n = 3
case:

ln (1 + x) < x−
x2

2
+

x3

3
was mentioned earlier in the course.
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To sum up, if x > 0 then

ln (1 + x)

{

> Tn,0f(x) if n is even
< Tn,0f(x) if n is odd.

Assume −1 < x < 0 then (−1)n xn+1 = (−x)n x < 0 for all n so

ln (1 + x) < Tn,0f(x)

for all n.

In the following diagram the Tn,0f (x), n = 1, ..., 6 are plotted, increas-
ingly better approximations to ln (1 + x).

ln(1+x)

−1

x
y

Note that for n odd we have ln (1 + x) < Tn,0f(x) for all x > −1.

11. Inequalities for ex. If f(x) = ex then for x ∈ R Lagrange’s form of
the error states that

Rn,0f(x) =
ecxn+1

(n+ 1)!

for some c between 0 and x. Whatever c, ec ≥ 0. Thus, when n is
odd we have xn+1 ≥ 0 for all x, i.e. ex ≥ Tn,0f(x). The example when
n = 3 :

ex > 1 + x+
x2

2
+

x3

6
(10)

for all x ∈ R was an example left to the Student earlier in the course.

For even n we have

ex

{

> Tn,0f(x) if x > 0

< Tn,0f(x) if x < 0.
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1+x+ x
2

2
+ x

3

6

e
x

1−1

x

y

12. Example 3.3.21 The Taylor Series for sin x around 0 is

∞
∑

r=0

(−1)r x2r+1

(2r + 1)!
.

The ratio test would show that this converges for all x ∈ R, but we have
to go further and show that, for each x, it converges to sin x.

Solution If f(x) = sin x then f (1)(x) = cos x and f (2)(x) = − sin x =
−f(x). Thus, if n is even then f (n)(0) is a multiple of f(0) = 0. So the
only non-zero terms have n odd, i.e. n = 2r + 1 for r ≥ 0. Further,

f (2r+1)(0) = (−1)r f (1)(0) = (−1)r .

The Taylor Series for sin x is

∞
∑

r=0

(−1)r x2r+1

(2r + 1)!
.

For convergence we examine Lagrange’s form of the error term,

Rn,0 (sin x) =
f (n+1)(c)

(n+ 1)!
xn+1

for some c between 0 and x. Yet
∣

∣f (n+1)(c)
∣

∣ is either |sin c| or |cos c|
and both are ≤ 1, so

|Rn,0 (sin x)| ≤
|x|n+1

(n+ 1)!
→ 0
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as n → ∞ for any x ∈ R. Hence, for each fixed x ∈ R, we have
limn→∞Rn,0f(x) = 0 and so the Taylor series converges to sin x, i.e.

sin x = x−
x3

3!
+

x5

5!
− ... =

∞
∑

r=0

(−1)r x2r+1

(2r + 1)!
.

�

Note This series can be taken as the definition of sine but this would

have made some of the proofs of this course more difficult. For example,

to prove d sin x/dx = cos x, we would need to be able to differentiate an

infinite series term by term. And since differentiation is defined by limits

this is equivalent to interchanging a limit with an infinite series, a problem

mentioned earlier in the notes.

13. Example 3.3.22 Calculate the Taylor Series for sin x around π/2.

Solution Consider

dn

dxn
sin x

∣

∣

∣

∣

x=π

2

= sin
(π

2
+ n

π

2

)

=











0 if n odd

1 ifn = 0, 4, 8, ...

−1 if n = 2, 6, 10, ...

=

{

0 if n = 2r + 1

(−1)r if n = 2r.

Hence the Taylor Series around π/2 is

∞
∑

r=0

(−1)r

(2r)!

(

x−
π

2

)2r

.

The same proof as for sin x around 0 will show that this converges to
sin x for all real x.

14. Example 3.3.23 Calculate the Taylor series for f(x) = ex cosx around
0.
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Solution With f(x) = ex cosx,

f (1)(x) = ex cos x− ex sin x, so f (1)(0) = 1,

f (2)(x) = ex cos x− ex sin x− ex sin x− ex cos x

= −2ex sin x, so f (2)(0) = 0,

f (3)(x) = −2ex sin x− 2ex cosx, so f (3)(0) = −2,

f (4)(x) = −2ex sin x− 2ex cosx− 2ex cos x+ 2ex sin x

= −4ex cos x = −4f(x) so f (4)(0) = −4,

The fact that f (4)(x) = −4f(x) makes life easy, we start repeating
ourselves.

f (5)(x) = −4f (1)(x) so f (5)(0) = −4,

f (6)(x) = −4f (2)(x) so f (6)(0) = 0,

f (7)(x) = −4f (3)(x) so f (7)(0) = 8,

f (8)(x) = −4f (4)(x) = 16f(x) so f (8)(0) = 16.

So the Taylor series starts as

1 + x+
0

2!
x2 −

2

3!
x3 −

4

4!
x4 −

4

5!
x5 +

8

7!
x7 − ... (11)

= 1 + x−
1

3
x3 −

1

6
x4 −

1

30
x5 +

8

630
x7 − ...

The question must then be whether this is the same as we would obtain
from multiplying together the series for ex and cos x? Try it and see...

Question Does the series (11) converge to ex cos x?

Solution We first need a bound on the size of f (n)(x). Note that it
doesn’t have to be a good bound, anything of the form

∣

∣f (n)(x)
∣

∣ ≤ κne|x|

for some constant κ will suffice.

From the first list above we see that
∣

∣f (n)(x)
∣

∣ ≤ 4e|x| for all x and

0 ≤ n ≤ 4. But then f (4)(x) = −4f(x) which means that

f (n)(x) = (−4)k f (n−4k)(x)
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as long as n − 4k ≥ 0. We can choose k1 such that 0 ≤ n − 4k1 < 4
which means that

∣

∣f (n)(x)
∣

∣ = 4k1
∣

∣f (n−4k1)(x)
∣

∣ ≤ 4k1+1e|x|.

Finally 0 ≤ n − 4k1 implies k1 + 1 < n when n ≥ 2. Thus, for such n
we have the bound

∣

∣f (n)(x)
∣

∣ ≤ 4ne|x|

for all x. Hence, for each fixed x ∈ R, there exists c between 0 and x
for which

|Rn,0f(x)| =

∣

∣f (n+1)(c)
∣

∣

(n+ 1)!
|x|n+1 ≤

4n+1e|c|

(n+ 1)!
|x|n+1

≤ e|c|
(4 |x|)n+1

(n+ 1)!
→ 0

as n → ∞ by Lemma above. Hence, for each fixed x ∈ R, we have
limn→∞Rn,0f(x) = 0 and so the series (11) converges to ex cos x for all
x ∈ R.

15. (1861) The Binomial Expansion for (1 + x)t = et ln(1+x), for any

exponent t ∈ R, not just t ∈ N.

Note though, that for general t, the function (1 + x)t is only defined
for x > −1 (for only then is ln (1 + x) well-defined). Since

dn (1 + x)t

dxn
= t (t− 1) ... (t− n+ 1) (1 + x)t−n ,

the Taylor Series for (1 + x)t is

1+tx+
t (t− 1)

2!
x2+

t (t− 1) (t− 2)

3!
x3+... =

∞
∑

r=0

t (t− 1) ... (t− r + 1)

r!
xr.

To prove that limn→∞Rn,0

(

(1 + x)t
)

= 0 it transpires that it is easier
to use Cauchy’s form of the error. I leave it to the interested student
to check this, and thus find that the Taylor Series converges to (1 + x)t

for −1 < x < 1. �

16. Cauchy’s example of 1823
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Example 3.3.24 The Taylor series for

f(x) =

{

e−1/x
2

if x 6= 0,

0 if x = 0.

is

0 + 0x+ 0
x2

2
+ 0

x3

3!
+ ...

which converges for all x ∈ R. But it’s sum is f(x) only when x = 0.

Do this by a series of Lemmas.

Lemma A

lim
x→0

e−1/x
2

xn
= 0

for all n ≥ 1.

Proof Recall that for y > 0, we have from the series defining ey that

ey = 1 + y +
y2

2
+

y3

3!
+ ...+

yn

n!
+ ... ≥

yn

n!
,

throwing away all other terms, allowable since they are positive. Apply
this inequality with y = 1/x2 to get

e1/x
2

≥
1

n!x2n
,

in which case
∣

∣

∣

∣

∣

e−1/x
2

xn

∣

∣

∣

∣

∣

≤
n!x2n

|x|n
= n! |x|n → 0

as x→ 0. �

Lemma B For n ≥ 1, there exist polynomials Pn(x) with degPn =
2 (n− 1), such that

f (n)(x) =
Pn(x)

x3n
e−1/x

2

,

for x 6= 0.

Proof by induction. Left to students. �

Lemma C For n ≥ 1, f (n)(0) = 0.
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Proof by induction. Starting with n = 1 we find that

f (1)(0) = lim
x→0

f(x)− f(0)

x− 0
= lim

x→0

e−1/x
2

x
= 0,

by Lemma A.

For the inductive step assume the result is true for n = k, so f (k)(0) = 0.
Consider

f (k+1)(0) = lim
x→0

f (k)(x)− f (k)(0)

x− 0
= lim

x→0

f (k)(x)

x

by the inductive hypothesis. Next, by Lemma B,

f (k+1)(0) = lim
x→0

Pk(x)

x3k+1
e−1/x

2

.

If

Pk(x) =

2(k−1)
∑

r=0

arx
r

then

lim
x→0

Pk(x)

x3k+1
e−1/x

2

=

2(k−1)
∑

r=0

ar lim
x→0

e−1/x
2

x3k+1−r
= 0

by Lemma A. Hence f (k+1)(0) = 0.

Therefore, by induction, f (n)(0) = 0 for all n ≥ 1. �

Thus the Taylor Series for f(x) is

0 + 0x+ 0
x2

2
+ 0

x3

3!
+ ...

which converges for all x ∈ R. But it’s sum is f(x) only when x = 0.�

17. Example 3.3.25 Show that the Taylor Series for f(x) = ex (cos x+ sin x)
converges to f(x) for all x ∈ R.

Solution We have already calculated that the Taylor series of f(x)
starts as

1 + 2x+ x2 −
1

6
x4 −

1

15
x5 −

1

90
x6 +

1

2520
x8 + ..., (12)
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and f (4)(x) = −4f(x). From Taylor’s Theorem with Lagrange’s form
of the error we have

Rn,0f (x) =
f (n+1)(c)

(n+ 1)!
xn+1

for some c between 0 and x. As for the ex sin x example above we can
show that

∣

∣f (n)(c)
∣

∣ ≤ 4ne|c| ≤ 4ne|x|,

since we need a bound not containing the unknown c. Thus

|Rn,0f(x)| ≤ e|x|
(4x)n+1

(n+ 1)!
→ 0

as n→∞, by the Lemma above. Hence (12) converges to ex (cos x+ sin x)
for all x ∈ R.

18. Taylor series of ln (1 + x). In this course we have defined the natural
logarithm as the inverse of ex. Thus we can calculate the Taylor series
of ln (1 + x). First published by Mercator in 1668, the series is

x−
x2

2
+

x3

3
−

x4

4
+

x5

5
− ... .

The ratio test shows the series converges for |x| < 1, while the Alter-
nating Series Test shows that it converges when x = 1. But again we
have to show that it converges to ln (1 + x).

Writing f(x) = ln (1 + x) then

f (j)(x) =
(−1)j+1 (j − 1)!

(1 + x)j

for all j ≥ 1. The integral form of the error states

Rn,0f(x) =

∫ x

0

f (n+1)(t)

n!
(x− t)n dt = (−1)n+2

∫ x

0

(x− t)n

(1 + t)n+1dt.

The most interesting case (because it is the most difficult) is x = 1
when we get the integral

In =

∫ 1

0

(

1− t

1 + t

)n
dt

(1 + t)
.
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Substitute w = (1− t) / (1 + t) to transform into

In =

∫ 1

0

wn

1 + w
dw ≤

∫ 1

0

wndw =
1

n+ 1
→ 0.

as n→∞. Thus limn→∞ Rn,0 (ln (1 + x))|x=1 = 0. This justifies

ln 2 = 1−
1

2
+

1

3
−

1

4
+ ... .

19. Example 3.3.26 Find the Taylor Series for sin2 x around a = 0 and
show that the series converges to sin2 x for all x ∈ R.

Solution When looking at the Taylor polynomial for f(x) = sin2 x we
already saw

f (1)(x) = 2 sin x cos x = sin 2x,

f (2)(x) = 2 cos 2x,

f (3)(x) = −4 sin 2x = −4f (1) (x) .

From this it is easy to deduce

f (r)(x) =

{

(−1)t−1 22t−2 sin 2x if r = 2t− 1 is odd

(−1)t−1 22t−1 cos 2x if r = 2t is even.

Thus

f (r)(0) =

{

0 if r is odd

(−1)t−1 2r−1 if r = 2t ≥ 2.

Therefore the Taylor series is

0 + 0x+
∞
∑

r=2
r even
r=2t

(−1)t−1 2r−1

r!
xr =

∞
∑

t=1

(−1)t−1 22t−1

(2t)!
x2t.

The first few terms are

x2 −
1

3
x4 +

2

45
x6 −

1

315
x8 + ...

To show that the series converges to sin2 x for all x ∈ R we need show
that

lim
n→∞

Rn,0

(

sin2 x
)

= 0
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for all x ∈ R. To do this we use Lagrange’s form of the error so, for
any x ∈ R we have

Rn,0

(

sin2 x
)

=
f (n+1)(c)

(n+ 1)!
xn (13)

for some c between 0 and x. From above

∣

∣f (r)(x)
∣

∣ ≤

{

|22t−2| = 2r−1 if r = 2t− 1 is odd

|22t−1| = 2r−1 if r = 2t is even.

Thus
∣

∣f (r)(x)
∣

∣ ≤ 2r−1

for r ≥ 1. Hence (13) becomes

∣

∣Rn,0

(

sin2 x
)∣

∣ =

∣

∣f (n+1)(c)
∣

∣

(n+ 1)!
|x|n ≤

2n

(n+ 1)!
|x|n =

(2 |x|)n

(n+ 1)!
→ 0

as n → ∞ by Lemma above. Thus Rn,0

(

sin2 x
)

→ 0 as n → ∞ and
the series converges to sin2 x for all x ∈ R. �
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