Appendix 3.3

Contents

- Taylor Polynomial for $e^{x}(\sin x+\cos x)$,
- $T_{8.0}\left(\cos ^{2} x\right)$,
- Bound $\left|\sin (0.1)-T_{5,0}(\sin x)\right|$,
- Bound $\left|\sin ^{2}(0.1)-T_{5,0}\left(\sin ^{2} x\right)\right|$,
- Bound $\left|\cos ^{2}(0.1)-T_{5,0}\left(\cos ^{2} x\right)\right|$,
- Taylor's Theorem without error term,
- Taylor's Theorem with error implies the Mean Value Theorem,
- Integral form of the error,
- $\lim _{x \rightarrow 0}(\cos x-1) / x^{2}$,
- Inequalities for $\ln (1+x)$,
- Inequalities for $\exp (x)$,
- Taylor Series for $\sin x$ converges to $\sin x$,
- Taylor Series for $\sin x$ around $\pi / 2$,
- Taylor Series for $e^{x} \cos x$,
- Binomial Theorem with real exponent,
- Cauchy's example (1823), of $f(x)=e^{-1 / x^{2}}$ for $x \neq 0$ with $f(0)=0$.
- Taylor Series for $e^{x}(\sin x+\cos x)$ converges to $e^{x}(\sin x+\cos x)$,
- Taylor Series for $\ln (1+x)$,
- Taylor Series for $\sin ^{2} x$ converges to $\sin ^{2} x$.

1. Example 3.3.16 With $f(x)=e^{x}(\sin x+\cos x)$ calculate $T_{8,0} f(x)$.

Solution

$$
\begin{aligned}
f^{(1)}(x) & =e^{x}(\sin x+\cos x)+e^{x}(\cos x-\sin x) \\
& =2 e^{x} \cos x \\
f^{(2)}(x) & =2 e^{x} \cos x-2 e^{x} \sin x \\
& =2 e^{x}(\cos x-\sin x), \\
f^{(3)}(x) & =2 e^{x}(\cos x-\sin x)+2 e^{x}(-\sin x-\cos x) \\
& =-4 e^{x} \sin x . \\
f^{(4)}(x) & =-4 e^{x} \sin x-4 e^{x} \cos x=-4 f(x) .
\end{aligned}
$$

The fact that a derivative is connected to the function simplifies matters greatly. For now

$$
f^{(5)}(x)=-4 f^{(1)}(x), f^{(6)}(x)=-4 f^{(2)}(x), f^{(7)}(x)=-4 f^{(3)}(x)
$$

and $f^{(8)}(x)=-4 f^{(4)}(x)=16 f(x)$.
Thus $f(0)=1, f^{(1)}(0)=2, \quad f^{(2)}(0)=2, f^{(3)}(0)=0, f^{(4)}(0)=-4$, $f^{(5)}(0)=-8, f^{(6)}(0)=-8, f^{(7)}(0)=0$ and $f^{(8)}(0)=16$.

Hence

$$
\begin{aligned}
T_{8,0} f(x) & =1+2 x+2 \frac{x^{2}}{2!}+0 \frac{x^{3}}{3!}-4 \frac{x^{4}}{4!}-8 \frac{x^{5}}{5!}-8 \frac{x^{6}}{6!}+0 \frac{x^{7}}{7!}+16 \frac{x^{8}}{8!} \\
& =1+2 x+x^{2}-\frac{x^{4}}{6}-\frac{x^{5}}{15}-\frac{x^{6}}{90}+\frac{x^{8}}{2520} .
\end{aligned}
$$

2. Example 3.3.17 Calculate

$$
T_{8.0}\left(\cos ^{2} x\right)
$$

Solution If $f(x)=\cos ^{2} x$ then $f^{\prime}(x)=-2 \cos x \sin x=-\sin 2 x$. This last equality will save a lot of effort when differentiating. Leave it to the student to check that

$$
T_{8.0}\left(\cos ^{2} x\right)=1-x^{2}+\frac{1}{3} x^{4}-\frac{2}{45} x^{6}+\frac{1}{315} x^{8} .
$$

3. Example 3.3.18 Let $f(x)=\sin x$. Calculate $T_{5,0} f(x)$ and use Lagrange's form of the error to prove that

$$
\left|\sin (0.1)-T_{5,0}(\sin (0.1))\right| \leq 1.38888 \times 10^{-9} .
$$

Hence give sin 0.1 to 8 decimal places.
Solution From $f^{(2)}(x)=-f(x)$ we get $f^{(n)}(x)=(-1)^{n / 2} \sin x$ if n is even and $f^{(n)}(x)=(-1)^{(n-1) / 2} \cos x$ if n is even. Thus

$$
T_{5,0} f(x)=x-\frac{x^{3}}{3!}+\frac{x^{5}}{6!} .
$$

Lagrange's form of the error states that

$$
R_{n, 0} f(x)=\frac{f^{(n+1)}(c)}{(n+1)!} x^{n+1}
$$

In this example $\left|f^{(n+1)}(c)\right| \leq 1$ for all n and c, thus

$$
\left|R_{n, 0} f(x)\right| \leq \frac{|x|^{n+1}}{(n+1)!}
$$

Hence

$$
\left|\sin (0.1)-T_{5,0}(\sin (0.1))\right| \leq \frac{0.1^{6}}{6!}=1.38888 \times 10^{-9}
$$

as claimed.
We can open this out as
$T_{5,0}(\sin (0.1))-1.38888 \times 10^{-9} \leq \sin (0.1) \leq T_{5,0}(\sin (0.1))+1.38888 \times 10^{-9}$.
Yet

$$
\begin{aligned}
T_{5,0}(\sin 0.1) & =0.1-\frac{1}{6}(0.1)^{3}+\frac{1}{120}(0.1)^{5} \\
& =9.98334166666666667 \times 10^{-2}
\end{aligned}
$$

So
$9.98334166 \times 10^{-2}-1.38888 \times 10^{-9} \leq \sin (0.1) \leq 9.98334166 \times 10^{-2}+1.38888 \times 10^{-9}$.
that is,

$$
0.0998334152 \leq \sin (0.1) \leq 0.098334180
$$

Looking for digits in common between the upper and lower bounds we see that to 8 decimal places $\sin 0.1$ is 0.09983341 .
$($ In fact $\sin 0.1=0.0998334166468281523 \ldots$)
4. Example 3.3.19 Let $f(x)=\sin ^{2} x$. Calculate $T_{5,0} f(x)$ and use Lagrange's form of the error to bound $\left|\sin ^{2}(0.1)-T_{5,0} f(0.1)\right|$.
Solution Repeated differentiation gives

$$
\begin{array}{ll}
f^{\prime}(x)=2 \sin x \cos x=\sin 2 x & f^{\prime}(0)=0 \\
f^{\prime \prime}(x)=2 \cos 2 x, & f^{\prime \prime}(0)=2
\end{array}
$$

The next derivative gives the important relationship between derivatives, $f^{(3)}(x)=-4 \sin 2 x=-4 f^{(1)}(x)$. Then $f^{(3)}(0)=0$ along with

$$
\begin{array}{ll}
f^{(4)}(x)=-4 f^{\prime \prime}(x), & f^{(4)}(0)=-8 \\
f^{(5)}(x)=-4 f^{\prime \prime \prime}(x)=16 f^{\prime}(x) & f^{(5)}(0)=0 \\
f^{(6)}(x)=16 f^{\prime \prime}(x) &
\end{array}
$$

Thus

$$
\begin{aligned}
T_{5,0} f(x) & =0+0 x+2 \frac{x^{2}}{2}+0 \frac{x^{3}}{3!}-8 \frac{x^{4}}{4!}+0 \frac{x^{5}}{5!} \\
& =x^{2}-\frac{1}{3} x^{4}
\end{aligned}
$$

And Lagrange's form of the error states that, for some c between x and 0 ,

$$
R_{5,0} f(x)=\left.\frac{x^{6}}{6!} \frac{d^{6}}{d x^{6}} \sin ^{2} x\right|_{x=c}=\frac{x^{6}}{6!}(32 \cos 2 c)
$$

First note that with $x=0.1>0$ we have $R_{5,0} f(x)>0$, in which case

$$
\sin ^{2}(0.1)=T_{5,0} f(0.1)+R_{5,0} f(0.1)>T_{5,0} f(0.1)
$$

Yet

$$
T_{5,0} f(0.1)=(0.1)^{2}-\frac{1}{3}(0.1)^{4}=0.009966666666 \ldots
$$

SO

$$
\sin ^{2}(0.1)>0.0099666 \ldots
$$

For any upper bound we have

$$
R_{5,0} f(0.1) \leq \frac{32}{6!}(0.1)^{6} \leq 4.444 \ldots \times 10^{-8}
$$

Thus

$$
\begin{aligned}
\sin ^{2}(0.1) & =T_{5,0} f(0.1)+R_{5,0} f(0.1) \\
& \leq(0.1)^{2}-\frac{1}{3}(0.1)^{4}+\frac{32}{6!}(0.1)^{6} \\
& =0.009966711111 \ldots
\end{aligned}
$$

Hence

$$
0.0099666 \ldots<\sin ^{2}(0.1)<0.009966711111 \ldots
$$

In fact

$$
\sin ^{2}(0.1)=0.00996671107937918444 \ldots .
$$

5. An example in the notes is not as strong as it could be.

Example 3.3.20 Use Lagrange's form for the error to show that

$$
\left|\cos ^{2} x-\left(1-x^{2}+\frac{1}{3} x^{4}\right)\right| \leq \frac{2}{45}|x|^{6} .
$$

Hence show that

$$
0.9900332 \overline{8} \leq \cos ^{2} 0.1 \leq 0.9900333 \overline{7}
$$

Thus

$$
\cos ^{2} 0.1=0.990033
$$

to 6 decimal places.
In fact $\cos ^{2} 0.1=0.990033288920620816 \ldots$
Solution The observation to make is that the polynomial of degree 4 is, in fact, the Taylor polynomial of degree 5. This is because

$$
1-x^{2}+\frac{1}{3} x^{4}=1+0 x-x^{2}+0 x^{3}+\frac{1}{3} x^{4}+0 x^{5}=T_{5,0}\left(\cos ^{2} x\right) .
$$

Thus

$$
\begin{aligned}
\left|\cos ^{2} x-\left(1-x^{2}+\frac{1}{3} x^{4}\right)\right| & =\left|R_{5,0}\left(\cos ^{2} x\right)\right|=\left|\frac{f^{(6)}(c)}{6!} x^{6}\right| \\
& =\frac{2^{5}}{6!}|\sin 2 c||x|^{6} \leq \frac{2}{45}|x|^{6}
\end{aligned}
$$

The Taylor polynomial approximation to $\cos ^{2} x$ at $x=0.1$ is

$$
\left.T_{5,0}\left(\cos ^{2} x\right)\right|_{x=0.1}=1-(0.1)^{2}+\frac{1}{3}(0.1)^{4}=0.9900 \overline{3}
$$

The error in this approximation is

$$
\frac{2}{45}|x|^{6}=\frac{4}{90}(0.1)^{6}=0.0000000 \overline{4}
$$

Hence

$$
\cos ^{2} 0.1 \leq 0.9900 \overline{3}+0.0000000 \overline{4}=0.9900333 \overline{7}
$$

while

$$
\cos ^{2} 0.1 \geq 0.9900 \overline{3}-0.0000000 \overline{4}=0.9900332 \overline{8}
$$

6. Taylor's Theorem without an error term would have stated that "if the first n derivatives of f exist and are continuous at a then

$$
\begin{equation*}
\lim _{x \rightarrow a} \frac{R_{n, a} f(x)}{(x-a)^{n}}=0 . " \tag{9}
\end{equation*}
$$

In assuming a little more, namely that the first $\mathbf{n}+\mathbf{1}$ derivatives of f exist (which implies continuity of $f^{(i)}, 1 \leq i \leq n$) we can deduce a little more, namely how quickly $R_{n, a} f(x) /(x-a)^{n}$ approaches 0 . See (3) or (4).
7. Taylor's Theorem with an error implies M. V. Theorem Putting $n=0$ in (1), the definition of the remainder gives

$$
f(x)=T_{0, a} f(x)+R_{0, a} f(x)=f(a)+R_{0, a} f(x) .
$$

Using Lagrange's Theorem gives

$$
f(x)=f(a)+f^{\prime}(c)(x-a)
$$

for some c between a and x, by (4). Rearranging,

$$
\frac{f(x)-f(a)}{x-a}=f^{\prime}(c),
$$

which is the Mean Value Theorem seen earlier. But this is not a proof of the Mean Value Theorem since we used the ideas of the Mean Value Theorem to prove Lagrange's form of the error, (4).
8. Integral form of the error An alternative form of the remainder which is sometimes useful is:

Integral Form: (Cauchy 1821) If the first $n+1$ derivatives of f exist and are continuous on an open interval containing a and x then

$$
R_{n, a} f(x)=\int_{a}^{x} \frac{f^{(n+1)}(t)}{n!}(x-t)^{n} d t .
$$

(We are jumping the gun here since we have to wait until the next chapter before we define integration!) Note that we have to assume that $f^{(n+1)}(t)$ not only exists but is continuous on (a, x). This is more than is required for either Lagrange's or Cauchy's forms of the error.
9. A limit for $\cos x$. Taylor's Theorem in the form

$$
\cos x=1-\frac{x^{2}}{2!}+\frac{x^{3}}{3!} \sin c
$$

for some c between 0 and x leads to

$$
\lim _{x \rightarrow 0} \frac{\cos x-1}{x^{2}}=-\frac{1}{2},
$$

which we have seen in Part 1 of this course. But now we see that $-1 / 2$ arises as a coefficient in the Taylor series.
10. Inequalities for $\ln (1+x)$. If $f(x)=\ln (1+x)$ then

$$
T_{n, 0} f(x)=\sum_{r=1}^{n} \frac{(-1)^{r-1} x^{r}}{r} .
$$

Lagrange's form for the Remainder term around $x=0$ becomes

$$
R_{n, 0} f(x)=\frac{f^{(n+1)}(c)}{(n+1)} x^{n+1}=\frac{(-1)^{n} x^{n+1}}{(1+c)^{n}(n+1)},
$$

for some c between x and 0 . Since $x>-1$ for $\ln (1+x)$ to be defined we have $c>-1$ too in which case $1+c>0$.

Assume $x>0$.
If n is even then $R_{n, 0} f(x)>0$, i.e. $\ln (1+x)>T_{n, 0} f(x)$. For $n=2,4$ and 6 this gives

$$
\ln (1+x)>x-\frac{x^{2}}{2}, \quad \ln (1+x)>x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4} .
$$

and

$$
\ln (1+x)>x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\frac{x^{5}}{5}-\frac{x^{6}}{6} .
$$

The first of these inequalities was a problem in an earlier section deduced from the Mean Value Theorem.

If n is odd then $R_{n, 0} f(x)<0$, i.e. $\ln (1+x)<T_{n, 0} f(x)$. The $n=3$ case:

$$
\ln (1+x)<x-\frac{x^{2}}{2}+\frac{x^{3}}{3}
$$

was mentioned earlier in the course.

To sum up, if $x>0$ then

$$
\ln (1+x) \begin{cases}>T_{n, 0} f(x) & \text { if } n \text { is even } \\ <T_{n, 0} f(x) & \text { if } n \text { is odd. }\end{cases}
$$

Assume $-1<x<0$ then $(-1)^{n} x^{n+1}=(-x)^{n} x<0$ for all n so

$$
\ln (1+x)<T_{n, 0} f(x)
$$

for all n.
In the following diagram the $T_{n, 0} f(x), n=1, \ldots, 6$ are plotted, increasingly better approximations to $\ln (1+x)$.

Note that for n odd we have $\ln (1+x)<T_{n, 0} f(x)$ for all $x>-1$.
11. Inequalities for e^{x}. If $f(x)=e^{x}$ then for $x \in \mathbb{R}$ Lagrange's form of the error states that

$$
R_{n, 0} f(x)=\frac{e^{c} x^{n+1}}{(n+1)!}
$$

for some c between 0 and x. Whatever $c, e^{c} \geq 0$. Thus, when n is odd we have $x^{n+1} \geq 0$ for all x, i.e. $e^{x} \geq T_{n, 0} f(x)$. The example when $n=3$:

$$
\begin{equation*}
e^{x}>1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6} \tag{10}
\end{equation*}
$$

for all $x \in \mathbb{R}$ was an example left to the Student earlier in the course. For even n we have

$$
e^{x} \begin{cases}>T_{n, 0} f(x) & \text { if } x>0 \\ <T_{n, 0} f(x) & \text { if } x<0\end{cases}
$$

12. Example 3.3.21 The Taylor Series for $\sin x$ around 0 is

$$
\sum_{r=0}^{\infty} \frac{(-1)^{r} x^{2 r+1}}{(2 r+1)!}
$$

The ratio test would show that this converges for all $x \in \mathbb{R}$, but we have to go further and show that, for each x, it converges to $\sin x$.

Solution If $f(x)=\sin x$ then $f^{(1)}(x)=\cos x$ and $f^{(2)}(x)=-\sin x=$ $-f(x)$. Thus, if n is even then $f^{(n)}(0)$ is a multiple of $f(0)=0$. So the only non-zero terms have n odd, i.e. $n=2 r+1$ for $r \geq 0$. Further,

$$
f^{(2 r+1)}(0)=(-1)^{r} f^{(1)}(0)=(-1)^{r}
$$

The Taylor Series for $\sin x$ is

$$
\sum_{r=0}^{\infty} \frac{(-1)^{r} x^{2 r+1}}{(2 r+1)!}
$$

For convergence we examine Lagrange's form of the error term,

$$
R_{n, 0}(\sin x)=\frac{f^{(n+1)}(c)}{(n+1)!} x^{n+1}
$$

for some c between 0 and x. Yet $\left|f^{(n+1)}(c)\right|$ is either $|\sin c|$ or $|\cos c|$ and both are ≤ 1, so

$$
\left|R_{n, 0}(\sin x)\right| \leq \frac{|x|^{n+1}}{(n+1)!} \rightarrow 0
$$

as $n \rightarrow \infty$ for any $x \in \mathbb{R}$. Hence, for each fixed $x \in \mathbb{R}$, we have $\lim _{n \rightarrow \infty} R_{n, 0} f(x)=0$ and so the Taylor series converges to $\sin x$, i.e.

$$
\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\ldots=\sum_{r=0}^{\infty} \frac{(-1)^{r} x^{2 r+1}}{(2 r+1)!}
$$

Note This series can be taken as the definition of sine but this would have made some of the proofs of this course more difficult. For example, to prove $d \sin x / d x=\cos x$, we would need to be able to differentiate an infinite series term by term. And since differentiation is defined by limits this is equivalent to interchanging a limit with an infinite series, a problem mentioned earlier in the notes.
13. Example 3.3.22 Calculate the Taylor Series for $\sin x$ around $\pi / 2$.

Solution Consider

$$
\begin{aligned}
\left.\frac{d^{n}}{d x^{n}} \sin x\right|_{x=\frac{\pi}{2}} & =\sin \left(\frac{\pi}{2}+n \frac{\pi}{2}\right)= \begin{cases}0 & \text { if } n \text { odd } \\
1 & \text { if } n=0,4,8, \ldots \\
-1 & \text { if } n=2,6,10, \ldots\end{cases} \\
& = \begin{cases}0 & \text { if } n=2 r+1 \\
(-1)^{r} & \text { if } n=2 r .\end{cases}
\end{aligned}
$$

Hence the Taylor Series around $\pi / 2$ is

$$
\sum_{r=0}^{\infty} \frac{(-1)^{r}}{(2 r)!}\left(x-\frac{\pi}{2}\right)^{2 r}
$$

The same proof as for $\sin x$ around 0 will show that this converges to $\sin x$ for all real x.
14. Example 3.3.23 Calculate the Taylor series for $f(x)=e^{x} \cos x$ around 0 .

Solution With $f(x)=e^{x} \cos x$,

$$
\begin{aligned}
f^{(1)}(x) & =e^{x} \cos x-e^{x} \sin x, \quad \text { so } f^{(1)}(0)=1, \\
f^{(2)}(x) & =e^{x} \cos x-e^{x} \sin x-e^{x} \sin x-e^{x} \cos x \\
& =-2 e^{x} \sin x, \quad \text { so } f^{(2)}(0)=0, \\
f^{(3)}(x) & =-2 e^{x} \sin x-2 e^{x} \cos x, \quad \text { so } f^{(3)}(0)=-2, \\
f^{(4)}(x) & =-2 e^{x} \sin x-2 e^{x} \cos x-2 e^{x} \cos x+2 e^{x} \sin x \\
& =-4 e^{x} \cos x=-4 f(x) \quad \text { so } f^{(4)}(0)=-4,
\end{aligned}
$$

The fact that $f^{(4)}(x)=-4 f(x)$ makes life easy, we start repeating ourselves.

$$
\begin{aligned}
& f^{(5)}(x)=-4 f^{(1)}(x) \quad \text { so } f^{(5)}(0)=-4, \\
& f^{(6)}(x)=-4 f^{(2)}(x) \quad \text { so } f^{(6)}(0)=0, \\
& f^{(7)}(x)=-4 f^{(3)}(x) \quad \text { so } f^{(7)}(0)=8, \\
& f^{(8)}(x)=-4 f^{(4)}(x)=16 f(x) \quad \text { so } f^{(8)}(0)=16 .
\end{aligned}
$$

So the Taylor series starts as

$$
\begin{align*}
& 1+x+\frac{0}{2!} x^{2}-\frac{2}{3!} x^{3}-\frac{4}{4!} x^{4}-\frac{4}{5!} x^{5}+\frac{8}{7!} x^{7}-\ldots \tag{11}\\
= & 1+x-\frac{1}{3} x^{3}-\frac{1}{6} x^{4}-\frac{1}{30} x^{5}+\frac{8}{630} x^{7}-\ldots
\end{align*}
$$

The question must then be whether this is the same as we would obtain from multiplying together the series for e^{x} and $\cos x$? Try it and see...

Question Does the series (11) converge to $e^{x} \cos x$?
Solution We first need a bound on the size of $f^{(n)}(x)$. Note that it doesn't have to be a good bound, anything of the form $\left|f^{(n)}(x)\right| \leq \kappa^{n} e^{|x|}$ for some constant κ will suffice.

From the first list above we see that $\left|f^{(n)}(x)\right| \leq 4 e^{|x|}$ for all x and $0 \leq n \leq 4$. But then $f^{(4)}(x)=-4 f(x)$ which means that

$$
f^{(n)}(x)=(-4)^{k} f^{(n-4 k)}(x)
$$

as long as $n-4 k \geq 0$. We can choose k_{1} such that $0 \leq n-4 k_{1}<4$ which means that

$$
\left|f^{(n)}(x)\right|=4^{k_{1}}\left|f^{\left(n-4 k_{1}\right)}(x)\right| \leq 4^{k_{1}+1} e^{|x|}
$$

Finally $0 \leq n-4 k_{1}$ implies $k_{1}+1<n$ when $n \geq 2$. Thus, for such n we have the bound

$$
\left|f^{(n)}(x)\right| \leq 4^{n} e^{|x|}
$$

for all x. Hence, for each fixed $x \in \mathbb{R}$, there exists c between 0 and x for which

$$
\begin{aligned}
\left|R_{n, 0} f(x)\right| & =\frac{\left|f^{(n+1)}(c)\right|}{(n+1)!}|x|^{n+1} \leq \frac{4^{n+1} e^{|c|}}{(n+1)!}|x|^{n+1} \\
& \leq e^{|c|} \frac{(4|x|)^{n+1}}{(n+1)!} \rightarrow 0
\end{aligned}
$$

as $n \rightarrow \infty$ by Lemma above. Hence, for each fixed $x \in \mathbb{R}$, we have $\lim _{n \rightarrow \infty} R_{n, 0} f(x)=0$ and so the series (11) converges to $e^{x} \cos x$ for all $x \in \mathbb{R}$.
15. (1861) The Binomial Expansion for $(1+x)^{t}=e^{t \ln (1+x)}$, for any exponent $t \in \mathbb{R}$, not just $t \in \mathbb{N}$.
Note though, that for general t, the function $(1+x)^{t}$ is only defined for $x>-1$ (for only then is $\ln (1+x)$ well-defined). Since

$$
\frac{d^{n}(1+x)^{t}}{d x^{n}}=t(t-1) \ldots(t-n+1)(1+x)^{t-n}
$$

the Taylor Series for $(1+x)^{t}$ is

$$
1+t x+\frac{t(t-1)}{2!} x^{2}+\frac{t(t-1)(t-2)}{3!} x^{3}+\ldots=\sum_{r=0}^{\infty} \frac{t(t-1) \ldots(t-r+1)}{r!} x^{r} .
$$

To prove that $\lim _{n \rightarrow \infty} R_{n, 0}\left((1+x)^{t}\right)=0$ it transpires that it is easier to use Cauchy's form of the error. I leave it to the interested student to check this, and thus find that the Taylor Series converges to $(1+x)^{t}$ for $-1<x<1$.
16. Cauchy's example of 1823

Example 3.3.24 The Taylor series for

$$
f(x)= \begin{cases}e^{-1 / x^{2}} & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}
$$

is

$$
0+0 x+0 \frac{x^{2}}{2}+0 \frac{x^{3}}{3!}+\ldots
$$

which converges for all $x \in \mathbb{R}$. But it's sum is $f(x)$ only when $x=0$.

Do this by a series of Lemmas.
Lemma A

$$
\lim _{x \rightarrow 0} \frac{e^{-1 / x^{2}}}{x^{n}}=0
$$

for all $n \geq 1$.
Proof Recall that for $y>0$, we have from the series defining e^{y} that

$$
e^{y}=1+y+\frac{y^{2}}{2}+\frac{y^{3}}{3!}+\ldots+\frac{y^{n}}{n!}+\ldots \geq \frac{y^{n}}{n!},
$$

throwing away all other terms, allowable since they are positive. Apply this inequality with $y=1 / x^{2}$ to get

$$
e^{1 / x^{2}} \geq \frac{1}{n!x^{2 n}}
$$

in which case

$$
\left|\frac{e^{-1 / x^{2}}}{x^{n}}\right| \leq \frac{n!x^{2 n}}{|x|^{n}}=n!|x|^{n} \rightarrow 0
$$

as $x \rightarrow 0$.
Lemma B For $n \geq 1$, there exist polynomials $P_{n}(x)$ with $\operatorname{deg} P_{n}=$ $2(n-1)$, such that

$$
f^{(n)}(x)=\frac{P_{n}(x)}{x^{3 n}} e^{-1 / x^{2}},
$$

for $x \neq 0$.
Proof by induction. Left to students.
Lemma C For $n \geq 1, f^{(n)}(0)=0$.

Proof by induction. Starting with $n=1$ we find that

$$
f^{(1)}(0)=\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0} \frac{e^{-1 / x^{2}}}{x}=0
$$

by Lemma A.
For the inductive step assume the result is true for $n=k$, so $f^{(k)}(0)=0$. Consider

$$
f^{(k+1)}(0)=\lim _{x \rightarrow 0} \frac{f^{(k)}(x)-f^{(k)}(0)}{x-0}=\lim _{x \rightarrow 0} \frac{f^{(k)}(x)}{x}
$$

by the inductive hypothesis. Next, by Lemma B,

$$
f^{(k+1)}(0)=\lim _{x \rightarrow 0} \frac{P_{k}(x)}{x^{3 k+1}} e^{-1 / x^{2}}
$$

If

$$
P_{k}(x)=\sum_{r=0}^{2(k-1)} a_{r} x^{r}
$$

then

$$
\lim _{x \rightarrow 0} \frac{P_{k}(x)}{x^{3 k+1}} e^{-1 / x^{2}}=\sum_{r=0}^{2(k-1)} a_{r} \lim _{x \rightarrow 0} \frac{e^{-1 / x^{2}}}{x^{3 k+1-r}}=0
$$

by Lemma A. Hence $f^{(k+1)}(0)=0$.
Therefore, by induction, $f^{(n)}(0)=0$ for all $n \geq 1$.
Thus the Taylor Series for $f(x)$ is

$$
0+0 x+0 \frac{x^{2}}{2}+0 \frac{x^{3}}{3!}+\ldots
$$

which converges for all $x \in \mathbb{R}$. But it's sum is $f(x)$ only when $x=0$.
17. Example 3.3.25 Show that the Taylor Series for $f(x)=e^{x}(\cos x+\sin x)$ converges to $f(x)$ for all $x \in \mathbb{R}$.
Solution We have already calculated that the Taylor series of $f(x)$ starts as

$$
\begin{equation*}
1+2 x+x^{2}-\frac{1}{6} x^{4}-\frac{1}{15} x^{5}-\frac{1}{90} x^{6}+\frac{1}{2520} x^{8}+\ldots \tag{12}
\end{equation*}
$$

and $f^{(4)}(x)=-4 f(x)$. From Taylor's Theorem with Lagrange's form of the error we have

$$
R_{n, 0} f(x)=\frac{f^{(n+1)}(c)}{(n+1)!} x^{n+1}
$$

for some c between 0 and x. As for the $e^{x} \sin x$ example above we can show that

$$
\left|f^{(n)}(c)\right| \leq 4^{n} e^{|c|} \leq 4^{n} e^{|x|}
$$

since we need a bound not containing the unknown c. Thus

$$
\left|R_{n, 0} f(x)\right| \leq e^{|x|} \frac{(4 x)^{n+1}}{(n+1)!} \rightarrow 0
$$

as $n \rightarrow \infty$, by the Lemma above. Hence (12) converges to $e^{x}(\cos x+\sin x)$ for all $x \in \mathbb{R}$.
18. Taylor series of $\ln (1+x)$. In this course we have defined the natural logarithm as the inverse of e^{x}. Thus we can calculate the Taylor series of $\ln (1+x)$. First published by Mercator in 1668, the series is

$$
x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\frac{x^{5}}{5}-\ldots .
$$

The ratio test shows the series converges for $|x|<1$, while the Alternating Series Test shows that it converges when $x=1$. But again we have to show that it converges to $\ln (1+x)$.

Writing $f(x)=\ln (1+x)$ then

$$
f^{(j)}(x)=\frac{(-1)^{j+1}(j-1)!}{(1+x)^{j}}
$$

for all $j \geq 1$. The integral form of the error states

$$
R_{n, 0} f(x)=\int_{0}^{x} \frac{f^{(n+1)}(t)}{n!}(x-t)^{n} d t=(-1)^{n+2} \int_{0}^{x} \frac{(x-t)^{n}}{(1+t)^{n+1}} d t
$$

The most interesting case (because it is the most difficult) is $x=1$ when we get the integral

$$
I_{n}=\int_{0}^{1}\left(\frac{1-t}{1+t}\right)^{n} \frac{d t}{(1+t)}
$$

Substitute $w=(1-t) /(1+t)$ to transform into

$$
I_{n}=\int_{0}^{1} \frac{w^{n}}{1+w} d w \leq \int_{0}^{1} w^{n} d w=\frac{1}{n+1} \rightarrow 0
$$

as $n \rightarrow \infty$. Thus $\left.\lim _{n \rightarrow \infty} R_{n, 0}(\ln (1+x))\right|_{x=1}=0$. This justifies

$$
\ln 2=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\ldots
$$

19. Example 3.3.26 Find the Taylor Series for $\sin ^{2} x$ around $a=0$ and show that the series converges to $\sin ^{2} x$ for all $x \in \mathbb{R}$.
Solution When looking at the Taylor polynomial for $f(x)=\sin ^{2} x$ we already saw

$$
\begin{aligned}
f^{(1)}(x) & =2 \sin x \cos x=\sin 2 x \\
f^{(2)}(x) & =2 \cos 2 x \\
f^{(3)}(x) & =-4 \sin 2 x=-4 f^{(1)}(x)
\end{aligned}
$$

From this it is easy to deduce

$$
f^{(r)}(x)= \begin{cases}(-1)^{t-1} 2^{2 t-2} \sin 2 x & \text { if } r=2 t-1 \text { is odd } \\ (-1)^{t-1} 2^{2 t-1} \cos 2 x & \text { if } r=2 t \text { is even. }\end{cases}
$$

Thus

$$
f^{(r)}(0)= \begin{cases}0 & \text { if } r \text { is odd } \\ (-1)^{t-1} 2^{r-1} & \text { if } r=2 t \geq 2\end{cases}
$$

Therefore the Taylor series is

$$
0+0 x+\sum_{\substack{r=2 \\ r \text { even } \\ r=2 t}}^{\infty} \frac{(-1)^{t-1} 2^{r-1}}{r!} x^{r}=\sum_{t=1}^{\infty} \frac{(-1)^{t-1} 2^{2 t-1}}{(2 t)!} x^{2 t}
$$

The first few terms are

$$
x^{2}-\frac{1}{3} x^{4}+\frac{2}{45} x^{6}-\frac{1}{315} x^{8}+\ldots
$$

To show that the series converges to $\sin ^{2} x$ for all $x \in \mathbb{R}$ we need show that

$$
\lim _{n \rightarrow \infty} R_{n, 0}\left(\sin ^{2} x\right)=0
$$

for all $x \in \mathbb{R}$. To do this we use Lagrange's form of the error so, for any $x \in \mathbb{R}$ we have

$$
\begin{equation*}
R_{n, 0}\left(\sin ^{2} x\right)=\frac{f^{(n+1)}(c)}{(n+1)!} x^{n} \tag{13}
\end{equation*}
$$

for some c between 0 and x. From above

$$
\left|f^{(r)}(x)\right| \leq \begin{cases}\left|2^{2 t-2}\right|=2^{r-1} & \text { if } r=2 t-1 \text { is odd } \\ \left|2^{2 t-1}\right|=2^{r-1} & \text { if } r=2 t \text { is even }\end{cases}
$$

Thus

$$
\left|f^{(r)}(x)\right| \leq 2^{r-1}
$$

for $r \geq 1$. Hence (13) becomes

$$
\left|R_{n, 0}\left(\sin ^{2} x\right)\right|=\frac{\left|f^{(n+1)}(c)\right|}{(n+1)!}|x|^{n} \leq \frac{2^{n}}{(n+1)!}|x|^{n}=\frac{(2|x|)^{n}}{(n+1)!} \rightarrow 0
$$

as $n \rightarrow \infty$ by Lemma above. Thus $R_{n, 0}\left(\sin ^{2} x\right) \rightarrow 0$ as $n \rightarrow \infty$ and the series converges to $\sin ^{2} x$ for all $x \in \mathbb{R}$.

