Appendix 3.3 Contents

- Taylor Polynomial for $e^x (\sin x + \cos x)$,
- $T_{8.0} (\cos^2 x)$,
- Bound $|\sin(0.1) T_{5,0}(\sin x)|$,
- Bound $\left|\sin^2(0.1) T_{5,0}\left(\sin^2 x\right)\right|$,
- Bound $|\cos^2(0.1) T_{5,0}(\cos^2 x)|$,
- Taylor's Theorem *without* error term,
- Taylor's Theorem with error implies the Mean Value Theorem,
- Integral form of the error,
- $\lim_{x\to 0} (\cos x 1) / x^2$,
- Inequalities for $\ln(1+x)$,
- Inequalities for $\exp(x)$,
- Taylor Series for $\sin x$ converges to $\sin x$,
- Taylor Series for $\sin x$ around $\pi/2$,
- Taylor Series for $e^x \cos x$,
- Binomial Theorem with real exponent,
- Cauchy's example (1823), of $f(x) = e^{-1/x^2}$ for $x \neq 0$ with f(0) = 0.
- Taylor Series for $e^x (\sin x + \cos x)$ converges to $e^x (\sin x + \cos x)$,
- Taylor Series for $\ln(1+x)$,
- Taylor Series for $\sin^2 x$ converges to $\sin^2 x$.

1. Example 3.3.16 With $f(x) = e^x (\sin x + \cos x)$ calculate $T_{8,0}f(x)$. Solution

$$f^{(1)}(x) = e^{x} (\sin x + \cos x) + e^{x} (\cos x - \sin x)$$

$$= 2e^{x} \cos x,$$

$$f^{(2)}(x) = 2e^{x} \cos x - 2e^{x} \sin x$$

$$= 2e^{x} (\cos x - \sin x),$$

$$f^{(3)}(x) = 2e^{x} (\cos x - \sin x) + 2e^{x} (-\sin x - \cos x)$$

$$= -4e^{x} \sin x.$$

$$f^{(4)}(x) = -4e^{x} \sin x - 4e^{x} \cos x = -4f(x).$$

The fact that a derivative is connected to the function simplifies matters greatly. For now

$$f^{(5)}(x) = -4f^{(1)}(x), f^{(6)}(x) = -4f^{(2)}(x), f^{(7)}(x) = -4f^{(3)}(x)$$

and $f^{(8)}(x) = -4f^{(4)}(x) = 16f(x)$.

Thus f(0) = 1, $f^{(1)}(0) = 2$, $f^{(2)}(0) = 2$, $f^{(3)}(0) = 0$, $f^{(4)}(0) = -4$, $f^{(5)}(0) = -8$, $f^{(6)}(0) = -8$, $f^{(7)}(0) = 0$ and $f^{(8)}(0) = 16$.

Hence

$$T_{8,0}f(x) = 1 + 2x + 2\frac{x^2}{2!} + 0\frac{x^3}{3!} - 4\frac{x^4}{4!} - 8\frac{x^5}{5!} - 8\frac{x^6}{6!} + 0\frac{x^7}{7!} + 16\frac{x^8}{8!}$$
$$= 1 + 2x + x^2 - \frac{x^4}{6} - \frac{x^5}{15} - \frac{x^6}{90} + \frac{x^8}{2520}.$$

2. Example 3.3.17 Calculate

$$T_{8.0}\left(\cos^2 x\right)$$

Solution If $f(x) = \cos^2 x$ then $f'(x) = -2\cos x \sin x = -\sin 2x$. This last equality will save a lot of effort when differentiating. Leave it to the student to check that

$$T_{8.0}\left(\cos^2 x\right) = 1 - x^2 + \frac{1}{3}x^4 - \frac{2}{45}x^6 + \frac{1}{315}x^8.$$

3. Example 3.3.18 Let $f(x) = \sin x$. Calculate $T_{5,0}f(x)$ and use Lagrange's form of the error to prove that

$$\left|\sin\left(0.1\right) - T_{5,0}\left(\sin\left(0.1\right)\right)\right| \le 1.38888 \times 10^{-9}.$$

Hence give $\sin 0.1$ to 8 decimal places.

Solution From $f^{(2)}(x) = -f(x)$ we get $f^{(n)}(x) = (-1)^{n/2} \sin x$ if *n* is even and $f^{(n)}(x) = (-1)^{(n-1)/2} \cos x$ if *n* is even. Thus

$$T_{5,0}f(x) = x - \frac{x^3}{3!} + \frac{x^5}{6!}.$$

Lagrange's form of the error states that

$$R_{n,0}f(x) = \frac{f^{(n+1)}(c)}{(n+1)!}x^{n+1}.$$

In this example $|f^{(n+1)}(c)| \leq 1$ for all n and c, thus

$$|R_{n,0}f(x)| \le \frac{|x|^{n+1}}{(n+1)!}.$$

Hence

$$\sin(0.1) - T_{5,0} \left(\sin(0.1) \right) \le \frac{0.1^6}{6!} = 1.38888 \times 10^{-9},$$

as claimed.

We can open this out as

 $T_{5,0}\left(\sin\left(0.1\right)\right) - 1.38888 \times 10^{-9} \le \sin\left(0.1\right) \le T_{5,0}\left(\sin\left(0.1\right)\right) + 1.38888 \times 10^{-9}.$

Yet

$$T_{5,0}(\sin 0.1) = 0.1 - \frac{1}{6}(0.1)^3 + \frac{1}{120}(0.1)^5$$
$$= 9.983341666666666666667 \times 10^{-2}$$

 So

$$9.98334166 \times 10^{-2} - 1.38888 \times 10^{-9} \le \sin(0.1) \le 9.98334166 \times 10^{-2} + 1.38888 \times 10^{-9}$$

that is,

$$0.0998334152 \le \sin(0.1) \le 0.098334180.$$

Looking for digits in common between the upper and lower bounds we see that to 8 decimal places $\sin 0.1$ is 0.09983341.

 $(\text{In fact } \sin 0.1 = 0.0998334166468281523...)$

- 4. Example 3.3.19 Let $f(x) = \sin^2 x$. Calculate $T_{5,0}f(x)$ and use Lagrange's form of the error to bound $|\sin^2(0.1) T_{5,0}f(0.1)|$.

Solution Repeated differentiation gives

$$f'(x) = 2\sin x \cos x = \sin 2x \quad f'(0) = 0,$$

$$f''(x) = 2\cos 2x, \qquad f''(0) = 2.$$

The next derivative gives the important relationship between derivatives, $f^{(3)}(x) = -4\sin 2x = -4f^{(1)}(x)$. Then $f^{(3)}(0) = 0$ along with

$$\begin{aligned} f^{(4)}(x) &= -4f''(x), & f^{(4)}(0) &= -8, \\ f^{(5)}(x) &= -4f'''(x) = 16f'(x) & f^{(5)}(0) &= 0. \\ f^{(6)}(x) &= 16f''(x). \end{aligned}$$

Thus

$$T_{5,0}f(x) = 0 + 0x + 2\frac{x^2}{2} + 0\frac{x^3}{3!} - 8\frac{x^4}{4!} + 0\frac{x^5}{5!}$$
$$= x^2 - \frac{1}{3}x^4.$$

And Lagrange's form of the error states that, for some c between x and 0,

$$R_{5,0}f(x) = \frac{x^6}{6!} \left. \frac{d^6}{dx^6} \sin^2 x \right|_{x=c} = \frac{x^6}{6!} \left(32\cos 2c \right).$$

First note that with x = 0.1 > 0 we have $R_{5,0}f(x) > 0$, in which case

$$\sin^2(0.1) = T_{5,0}f(0.1) + R_{5,0}f(0.1) > T_{5,0}f(0.1) .$$

Yet

$$T_{5,0}f(0.1) = (0.1)^2 - \frac{1}{3}(0.1)^4 = 0.00996666666666...,$$

 \mathbf{SO}

$$\sin^2(0.1) > 0.0099666...$$

For any upper bound we have

$$R_{5,0}f(0.1) \le \frac{32}{6!} (0.1)^6 \le 4.444... \times 10^{-8}.$$

Thus

$$\sin^{2}(0.1) = T_{5,0}f(0.1) + R_{5,0}f(0.1)$$

$$\leq (0.1)^{2} - \frac{1}{3}(0.1)^{4} + \frac{32}{6!}(0.1)^{6}$$

$$= 0.009966711111....$$

Hence

 $0.0099666... < \sin^2(0.1) < 0.009966711111...$

In fact

$$\sin^2(0.1) = 0.00996671107937918444...$$

.

5. An example in the notes is not as strong as it could be.

Example 3.3.20 Use Lagrange's form for the error to show that

$$\left|\cos^2 x - \left(1 - x^2 + \frac{1}{3}x^4\right)\right| \le \frac{2}{45} |x|^6.$$

Hence show that

$$0.9900332\overline{8} \le \cos^2 0.1 \le 0.9900333\overline{7}.$$

Thus

$$\cos^2 0.1 = 0.990033$$

to 6 decimal places.

In fact $\cos^2 0.1 = 0.990033288920620816...$

Solution The observation to make is that the polynomial of degree 4 is, in fact, the Taylor polynomial of degree 5. This is because

$$1 - x^{2} + \frac{1}{3}x^{4} = 1 + 0x - x^{2} + 0x^{3} + \frac{1}{3}x^{4} + 0x^{5} = T_{5,0}\left(\cos^{2} x\right).$$

Thus

$$\left| \cos^2 x - \left(1 - x^2 + \frac{1}{3} x^4 \right) \right| = \left| R_{5,0} \left(\cos^2 x \right) \right| = \left| \frac{f^{(6)}(c)}{6!} x^6 \right|$$
$$= \frac{2^5}{6!} \left| \sin 2c \right| \left| x \right|^6 \le \frac{2}{45} \left| x \right|^6.$$

The Taylor polynomial approximation to $\cos^2 x$ at x = 0.1 is

$$T_{5,0}\left(\cos^2 x\right)\Big|_{x=0.1} = 1 - (0.1)^2 + \frac{1}{3}\left(0.1\right)^4 = 0.9900\overline{3}.$$

The error in this approximation is

$$\frac{2}{45} |x|^6 = \frac{4}{90} (0.1)^6 = 0.0000000\overline{4}.$$

Hence

$$\cos^2 0.1 \le 0.9900\overline{3} + 0.0000000\overline{4} = 0.9900333\overline{7}$$

while

$$\cos^2 0.1 \ge 0.9900\overline{3} - 0.0000000\overline{4} = 0.9900332\overline{8}$$

6. Taylor's Theorem without an error term would have stated that "if the first n derivatives of f exist and are continuous at a then

$$\lim_{x \to a} \frac{R_{n,a} f(x)}{(x-a)^n} = 0.$$
 (9)

In assuming a little more, namely that the first $\mathbf{n} + \mathbf{1}$ derivatives of f exist (which implies continuity of $f^{(i)}$, $1 \le i \le n$) we can deduce a little more, namely how quickly $R_{n,a}f(x)/(x-a)^n$ approaches 0. See (3) or (4).

7. Taylor's Theorem with an error implies M. V. Theorem Putting n = 0 in (1), the definition of the remainder gives

$$f(x) = T_{0,a}f(x) + R_{0,a}f(x) = f(a) + R_{0,a}f(x).$$

Using Lagrange's Theorem gives

$$f(x) = f(a) + f'(c)(x - a)$$

for some c between a and x, by (4). Rearranging,

$$\frac{f(x) - f(a)}{x - a} = f'(c)$$

which is the Mean Value Theorem seen earlier. But this is **not** a proof of the Mean Value Theorem since we used the ideas of the Mean Value Theorem to prove Lagrange's form of the error, (4).

8. **Integral form of the error** An alternative form of the remainder which is sometimes useful is:

Integral Form: (Cauchy 1821) If the first n + 1 derivatives of f exist and are continuous on an open interval containing a and x then

$$R_{n,a}f(x) = \int_{a}^{x} \frac{f^{(n+1)}(t)}{n!} (x-t)^{n} dt.$$

(We are jumping the gun here since we have to wait until the next chapter before we define integration!) Note that we have to assume that $f^{(n+1)}(t)$ not only exists but is continuous on (a, x). This is more than is required for either Lagrange's or Cauchy's forms of the error.

9. A limit for $\cos x$. Taylor's Theorem in the form

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^3}{3!}\sin c$$

for some c between 0 and x leads to

$$\lim_{x \to 0} \frac{\cos x - 1}{x^2} = -\frac{1}{2},$$

which we have seen in Part 1 of this course. But now we see that -1/2 arises as a coefficient in the Taylor series.

10. Inequalities for $\ln(1+x)$. If $f(x) = \ln(1+x)$ then

$$T_{n,0}f(x) = \sum_{r=1}^{n} \frac{(-1)^{r-1} x^r}{r}.$$

Lagrange's form for the Remainder term around x = 0 becomes

$$R_{n,0}f(x) = \frac{f^{(n+1)}(c)}{(n+1)}x^{n+1} = \frac{(-1)^n x^{n+1}}{(1+c)^n (n+1)},$$

for some c between x and 0. Since x > -1 for $\ln(1+x)$ to be defined we have c > -1 too in which case 1 + c > 0.

Assume x > 0.

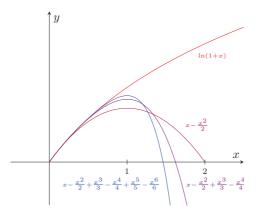
If n is even then $R_{n,0}f(x) > 0$, i.e. $\ln(1+x) > T_{n,0}f(x)$. For n = 2, 4and 6 this gives

$$\ln(1+x) > x - \frac{x^2}{2}, \quad \ln(1+x) > x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4}$$

and

$$\ln(1+x) > x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \frac{x^5}{5} - \frac{x^6}{6}.$$

The first of these inequalities was a problem in an earlier section deduced from the Mean Value Theorem.



If *n* is odd then $R_{n,0}f(x) < 0$, i.e. $\ln(1+x) < T_{n,0}f(x)$. The n = 3 case:

$$\ln(1+x) < x - \frac{x^2}{2} + \frac{x^3}{3}$$

was mentioned earlier in the course.

To sum up, if x > 0 then

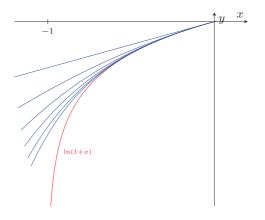
$$\ln(1+x) \begin{cases} > T_{n,0}f(x) & \text{if } n \text{ is even} \\ < T_{n,0}f(x) & \text{if } n \text{ is odd.} \end{cases}$$

Assume -1 < x < 0 then $(-1)^n x^{n+1} = (-x)^n x < 0$ for all *n* so

$$\ln\left(1+x\right) < T_{n,0}f(x)$$

for all n.

In the following diagram the $T_{n,0}f(x)$, n = 1, ..., 6 are plotted, increasingly better approximations to $\ln(1+x)$.



Note that for n odd we have $\ln(1+x) < T_{n,0}f(x)$ for all x > -1.

11. Inequalities for e^x . If $f(x) = e^x$ then for $x \in \mathbb{R}$ Lagrange's form of the error states that

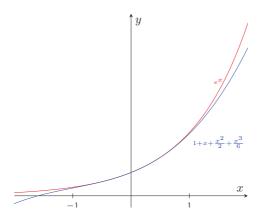
$$R_{n,0}f(x) = \frac{e^c x^{n+1}}{(n+1)!}$$

for some c between 0 and x. Whatever c, $e^c \ge 0$. Thus, when n is odd we have $x^{n+1} \ge 0$ for all x, i.e. $e^x \ge T_{n,0}f(x)$. The example when n = 3:

$$e^x > 1 + x + \frac{x^2}{2} + \frac{x^3}{6} \tag{10}$$

for all $x \in \mathbb{R}$ was an example left to the Student earlier in the course. For even n we have

$$e^{x} \begin{cases} > T_{n,0}f(x) & \text{if } x > 0 \\ < T_{n,0}f(x) & \text{if } x < 0. \end{cases}$$



12. Example 3.3.21 The Taylor Series for $\sin x$ around 0 is

$$\sum_{r=0}^{\infty} \frac{(-1)^r x^{2r+1}}{(2r+1)!}.$$

The ratio test would show that this converges for all $x \in \mathbb{R}$, but we have to go further and show that, for each x, **it converges to** sin x.

Solution If $f(x) = \sin x$ then $f^{(1)}(x) = \cos x$ and $f^{(2)}(x) = -\sin x = -f(x)$. Thus, if *n* is even then $f^{(n)}(0)$ is a multiple of f(0) = 0. So the only non-zero terms have *n* odd, i.e. n = 2r + 1 for $r \ge 0$. Further,

$$f^{(2r+1)}(0) = (-1)^r f^{(1)}(0) = (-1)^r.$$

The Taylor Series for $\sin x$ is

$$\sum_{r=0}^{\infty} \frac{(-1)^r x^{2r+1}}{(2r+1)!}$$

For convergence we examine Lagrange's form of the error term,

$$R_{n,0}(\sin x) = \frac{f^{(n+1)}(c)}{(n+1)!} x^{n+1}$$

for some c between 0 and x. Yet $|f^{(n+1)}(c)|$ is either $|\sin c|$ or $|\cos c|$ and both are ≤ 1 , so

$$|R_{n,0}(\sin x)| \le \frac{|x|^{n+1}}{(n+1)!} \to 0$$

as $n \to \infty$ for any $x \in \mathbb{R}$. Hence, for each fixed $x \in \mathbb{R}$, we have $\lim_{n\to\infty} R_{n,0}f(x) = 0$ and so the Taylor series converges to $\sin x$, i.e.

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots = \sum_{r=0}^{\infty} \frac{(-1)^r x^{2r+1}}{(2r+1)!}.$$

Note This series can be taken as the definition of sine but this would have made some of the proofs of this course more difficult. For example, to prove $d \sin x/dx = \cos x$, we would need to be able to differentiate an infinite series term by term. And since differentiation is defined by limits this is equivalent to interchanging a limit with an infinite series, a problem mentioned earlier in the notes.

13. Example 3.3.22 Calculate the Taylor Series for $\sin x$ around $\pi/2$. Solution Consider

$$\frac{d^n}{dx^n} \sin x \Big|_{x=\frac{\pi}{2}} = \sin\left(\frac{\pi}{2} + n\frac{\pi}{2}\right) = \begin{cases} 0 & \text{if } n \text{ odd} \\ 1 & \text{if } n = 0, 4, 8, \dots \\ -1 & \text{if } n = 2, 6, 10, \dots \end{cases}$$
$$= \begin{cases} 0 & \text{if } n = 2r + 1 \\ (-1)^r & \text{if } n = 2r. \end{cases}$$

Hence the Taylor Series around $\pi/2$ is

$$\sum_{r=0}^{\infty} \frac{(-1)^r}{(2r)!} \left(x - \frac{\pi}{2}\right)^{2r}.$$

The same proof as for $\sin x$ around 0 will show that this converges to $\sin x$ for all real x.

14. Example 3.3.23 Calculate the Taylor series for $f(x) = e^x \cos x$ around 0.

Solution With $f(x) = e^x \cos x$,

$$f^{(1)}(x) = e^x \cos x - e^x \sin x, \quad \text{so } f^{(1)}(0) = 1,$$

$$f^{(2)}(x) = e^x \cos x - e^x \sin x - e^x \sin x - e^x \cos x$$

$$= -2e^x \sin x, \quad \text{so } f^{(2)}(0) = 0,$$

$$f^{(3)}(x) = -2e^x \sin x - 2e^x \cos x, \quad \text{so } f^{(3)}(0) = -2,$$

$$f^{(4)}(x) = -2e^x \sin x - 2e^x \cos x - 2e^x \cos x + 2e^x \sin x$$

$$= -4e^x \cos x = -4f(x) \quad \text{so } f^{(4)}(0) = -4,$$

The fact that $f^{(4)}(x) = -4f(x)$ makes life easy, we start repeating ourselves.

$$\begin{aligned} f^{(5)}(x) &= -4f^{(1)}(x) &\text{so } f^{(5)}(0) = -4, \\ f^{(6)}(x) &= -4f^{(2)}(x) &\text{so } f^{(6)}(0) = 0, \\ f^{(7)}(x) &= -4f^{(3)}(x) &\text{so } f^{(7)}(0) = 8, \\ f^{(8)}(x) &= -4f^{(4)}(x) = 16f(x) &\text{so } f^{(8)}(0) = 16. \end{aligned}$$

So the Taylor series starts as

$$1 + x + \frac{0}{2!}x^2 - \frac{2}{3!}x^3 - \frac{4}{4!}x^4 - \frac{4}{5!}x^5 + \frac{8}{7!}x^7 - \dots$$
(11)
= $1 + x - \frac{1}{3}x^3 - \frac{1}{6}x^4 - \frac{1}{30}x^5 + \frac{8}{630}x^7 - \dots$

The question must then be whether this is the same as we would obtain from multiplying together the series for e^x and $\cos x$? Try it and see...

Question Does the series (11) converge to $e^x \cos x$?

Solution We first need a bound on the size of $f^{(n)}(x)$. Note that it doesn't have to be a good bound, anything of the form $|f^{(n)}(x)| \leq \kappa^n e^{|x|}$ for some constant κ will suffice.

From the first list above we see that $|f^{(n)}(x)| \leq 4e^{|x|}$ for all x and $0 \leq n \leq 4$. But then $f^{(4)}(x) = -4f(x)$ which means that

$$f^{(n)}(x) = (-4)^k f^{(n-4k)}(x)$$

as long as $n - 4k \ge 0$. We can choose k_1 such that $0 \le n - 4k_1 < 4$ which means that

$$\left|f^{(n)}(x)\right| = 4^{k_1} \left|f^{(n-4k_1)}(x)\right| \le 4^{k_1+1} e^{|x|}.$$

Finally $0 \le n - 4k_1$ implies $k_1 + 1 < n$ when $n \ge 2$. Thus, for such n we have the bound

$$\left| f^{(n)}(x) \right| \le 4^n e^{|x|}$$

for all x. Hence, for each fixed $x \in \mathbb{R}$, there exists c between 0 and x for which

$$|R_{n,0}f(x)| = \frac{\left|f^{(n+1)}(c)\right|}{(n+1)!} |x|^{n+1} \le \frac{4^{n+1}e^{|c|}}{(n+1)!} |x|^{n+1}$$
$$\le e^{|c|} \frac{(4|x|)^{n+1}}{(n+1)!} \to 0$$

as $n \to \infty$ by Lemma above. Hence, for each fixed $x \in \mathbb{R}$, we have $\lim_{n\to\infty} R_{n,0}f(x) = 0$ and so the series (11) converges to $e^x \cos x$ for all $x \in \mathbb{R}$.

15. (1861) The Binomial Expansion for $(1+x)^t = e^{t \ln(1+x)}$, for any exponent $t \in \mathbb{R}$, not just $t \in \mathbb{N}$.

Note though, that for general t, the function $(1 + x)^t$ is only defined for x > -1 (for only then is $\ln (1 + x)$ well-defined). Since

$$\frac{d^n \left(1+x\right)^t}{dx^n} = t \left(t-1\right) \dots \left(t-n+1\right) \left(1+x\right)^{t-n},$$

the Taylor Series for $(1+x)^t$ is

$$1+tx+\frac{t(t-1)}{2!}x^2+\frac{t(t-1)(t-2)}{3!}x^3+\ldots = \sum_{r=0}^{\infty}\frac{t(t-1)\dots(t-r+1)}{r!}x^r.$$

To prove that $\lim_{n\to\infty} R_{n,0} \left((1+x)^t \right) = 0$ it transpires that it is easier to use Cauchy's form of the error. I leave it to the interested student to check this, and thus find that the Taylor Series converges to $(1+x)^t$ for -1 < x < 1.

16. Cauchy's example of 1823

Example 3.3.24 The Taylor series for

$$f(x) = \begin{cases} e^{-1/x^2} & \text{if } x \neq 0, \\ 0 & \text{if } x = 0. \end{cases}$$

is

$$0 + 0x + 0\frac{x^2}{2} + 0\frac{x^3}{3!} + \dots$$

which converges for all $x \in \mathbb{R}$. But it's sum is f(x) only when x = 0.

Do this by a series of Lemmas.

Lemma A

$$\lim_{x \to 0} \frac{e^{-1/x^2}}{x^n} = 0$$

for all $n \geq 1$.

Proof Recall that for y > 0, we have from the series defining e^y that

$$e^y = 1 + y + \frac{y^2}{2} + \frac{y^3}{3!} + \dots + \frac{y^n}{n!} + \dots \ge \frac{y^n}{n!},$$

throwing away all other terms, allowable since they are positive. Apply this inequality with $y = 1/x^2$ to get

$$e^{1/x^2} \ge \frac{1}{n!x^{2n}},$$

in which case

$$\left|\frac{e^{-1/x^2}}{x^n}\right| \le \frac{n!x^{2n}}{|x|^n} = n! |x|^n \to 0$$

as $x \to 0$.

Lemma B For $n \ge 1$, there exist polynomials $P_n(x)$ with deg $P_n = 2(n-1)$, such that

$$f^{(n)}(x) = \frac{P_n(x)}{x^{3n}} e^{-1/x^2},$$

for $x \neq 0$.

Proof by induction. Left to students.

Lemma C For $n \ge 1$, $f^{(n)}(0) = 0$.

Proof by induction. Starting with n = 1 we find that

$$f^{(1)}(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{e^{-1/x^2}}{x} = 0,$$

by Lemma A.

For the inductive step assume the result is true for n = k, so $f^{(k)}(0) = 0$. Consider

$$f^{(k+1)}(0) = \lim_{x \to 0} \frac{f^{(k)}(x) - f^{(k)}(0)}{x - 0} = \lim_{x \to 0} \frac{f^{(k)}(x)}{x}$$

by the inductive hypothesis. Next, by Lemma B,

$$f^{(k+1)}(0) = \lim_{x \to 0} \frac{P_k(x)}{x^{3k+1}} e^{-1/x^2}.$$

If

$$P_k(x) = \sum_{r=0}^{2(k-1)} a_r x^r$$

then

$$\lim_{x \to 0} \frac{P_k(x)}{x^{3k+1}} e^{-1/x^2} = \sum_{r=0}^{2(k-1)} a_r \lim_{x \to 0} \frac{e^{-1/x^2}}{x^{3k+1-r}} = 0$$

by Lemma A. Hence $f^{(k+1)}(0) = 0$.

Therefore, by induction, $f^{(n)}(0) = 0$ for all $n \ge 1$.

Thus the Taylor Series for f(x) is

$$0 + 0x + 0\frac{x^2}{2} + 0\frac{x^3}{3!} + \dots$$

which converges for all $x \in \mathbb{R}$. But it's sum is f(x) only when x = 0.

17. Example 3.3.25 Show that the Taylor Series for $f(x) = e^x (\cos x + \sin x)$ converges to f(x) for all $x \in \mathbb{R}$.

Solution We have already calculated that the Taylor series of f(x) starts as

$$1 + 2x + x^{2} - \frac{1}{6}x^{4} - \frac{1}{15}x^{5} - \frac{1}{90}x^{6} + \frac{1}{2520}x^{8} + \dots,$$
(12)

and $f^{(4)}(x) = -4f(x)$. From Taylor's Theorem with Lagrange's form of the error we have

$$R_{n,0}f(x) = \frac{f^{(n+1)}(c)}{(n+1)!}x^{n+1}$$

for some c between 0 and x. As for the $e^x \sin x$ example above we can show that

$$\left|f^{(n)}(c)\right| \le 4^{n} e^{|c|} \le 4^{n} e^{|x|},$$

since we need a bound not containing the unknown c. Thus

$$|R_{n,0}f(x)| \le e^{|x|} \frac{(4x)^{n+1}}{(n+1)!} \to 0$$

as $n \to \infty$, by the Lemma above. Hence (12) converges to $e^x (\cos x + \sin x)$ for all $x \in \mathbb{R}$.

18. Taylor series of $\ln (1 + x)$. In this course we have defined the natural logarithm as the inverse of e^x . Thus we can calculate the Taylor series of $\ln (1 + x)$. First published by Mercator in 1668, the series is

$$x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \frac{x^5}{5} - \dots$$

The ratio test shows the series converges for |x| < 1, while the Alternating Series Test shows that it converges when x = 1. But again we have to show that it converges to $\ln(1 + x)$.

Writing $f(x) = \ln(1+x)$ then

$$f^{(j)}(x) = \frac{(-1)^{j+1} (j-1)!}{(1+x)^j}$$

for all $j \ge 1$. The *integral form* of the error states

$$R_{n,0}f(x) = \int_0^x \frac{f^{(n+1)}(t)}{n!} (x-t)^n dt = (-1)^{n+2} \int_0^x \frac{(x-t)^n}{(1+t)^{n+1}} dt.$$

The most interesting case (because it is the most difficult) is x = 1when we get the integral

$$I_n = \int_0^1 \left(\frac{1-t}{1+t}\right)^n \frac{dt}{(1+t)}.$$

Substitute w = (1 - t) / (1 + t) to transform into

$$I_n = \int_0^1 \frac{w^n}{1+w} dw \le \int_0^1 w^n dw = \frac{1}{n+1} \to 0.$$

as $n \to \infty$. Thus $\lim_{n\to\infty} R_{n,0} \left(\ln (1+x) \right) \Big|_{x=1} = 0$. This justifies

$$\ln 2 = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots \,.$$

19. Example 3.3.26 Find the Taylor Series for $\sin^2 x$ around a = 0 and show that the series converges to $\sin^2 x$ for all $x \in \mathbb{R}$.

Solution When looking at the Taylor polynomial for $f(x) = \sin^2 x$ we already saw

$$f^{(1)}(x) = 2\sin x \cos x = \sin 2x,$$

$$f^{(2)}(x) = 2\cos 2x,$$

$$f^{(3)}(x) = -4\sin 2x = -4f^{(1)}(x).$$

From this it is easy to deduce

$$f^{(r)}(x) = \begin{cases} (-1)^{t-1} 2^{2t-2} \sin 2x & \text{if } r = 2t-1 \text{ is odd} \\ (-1)^{t-1} 2^{2t-1} \cos 2x & \text{if } r = 2t \text{ is even.} \end{cases}$$

Thus

$$f^{(r)}(0) = \begin{cases} 0 & \text{if } r \text{ is odd} \\ (-1)^{t-1} 2^{r-1} & \text{if } r = 2t \ge 2. \end{cases}$$

Therefore the Taylor series is

$$0 + 0x + \sum_{\substack{r=2\\r \text{ even}\\r=2t}}^{\infty} \frac{(-1)^{t-1} 2^{r-1}}{r!} x^r = \sum_{t=1}^{\infty} \frac{(-1)^{t-1} 2^{2t-1}}{(2t)!} x^{2t}.$$

The first few terms are

$$x^{2} - \frac{1}{3}x^{4} + \frac{2}{45}x^{6} - \frac{1}{315}x^{8} + \dots$$

To show that the series converges to $\sin^2 x$ for all $x \in \mathbb{R}$ we need show that

$$\lim_{n \to \infty} R_{n,0} \left(\sin^2 x \right) = 0$$

for all $x \in \mathbb{R}$. To do this we use Lagrange's form of the error so, for any $x \in \mathbb{R}$ we have

$$R_{n,0}\left(\sin^2 x\right) = \frac{f^{(n+1)}(c)}{(n+1)!}x^n \tag{13}$$

for some c between 0 and x. From above

$$\left| f^{(r)}(x) \right| \le \begin{cases} |2^{2t-2}| = 2^{r-1} & \text{if } r = 2t-1 \text{ is odd} \\ |2^{2t-1}| = 2^{r-1} & \text{if } r = 2t \text{ is even.} \end{cases}$$

Thus

$$\left|f^{(r)}(x)\right| \le 2^{r-1}$$

for $r \ge 1$. Hence (13) becomes

$$\left|R_{n,0}\left(\sin^2 x\right)\right| = \frac{\left|f^{(n+1)}(c)\right|}{(n+1)!} |x|^n \le \frac{2^n}{(n+1)!} |x|^n = \frac{(2|x|)^n}{(n+1)!} \to 0$$

as $n \to \infty$ by Lemma above. Thus $R_{n,0}(\sin^2 x) \to 0$ as $n \to \infty$ and the series converges to $\sin^2 x$ for all $x \in \mathbb{R}$.